ME170 Term Design Project Tools

Concept Selection

Course Instructor: Mike Philpott mphilpot@illinois.edu

Sketch and Present Concepts:

(Sketches 1-8)

Sketch and Present Concepts:

(Sketches 9-14)

Traditional Numerical Decision Matrix

Most widely used and taught method for concept selection.

	Weight	Rat	ting		Wtd. Rating						
	Factor	1	2	3	1	2	3				
Aesthetics Speed	53	4	3	2	20 9	15 3	10				
Mfg. Cost Weight Size	5 3 2	1 5 3	3 2 4	5 1 2	5 15 6	15 6 8	25 3 4				
Reliability	4	4	3	2	16	12	8				
Totals					73	59	56				
	Concept #1 is selected										

Controlled Convergence or Pugh's Concept Selection Matrix

An alternative matrix procedure for comparing and evaluating a number of different concepts; also, supports creation of additional improved concepts.

Advantages:

- Provides a step by step procedural tool
- Constraints to creative thinking are minimized
- Convergence onto the best solution is achieved
- Useful for defending a design in a sound and logical manner

Controlled Convergence The Method

- 1. Develop conceptual designs and create small sketches, all to the same level of detail
- 2. Create a matrix and list the concepts to be investigated along the top of the matrix (ideally the actual sketches, perhaps photo-reduced)

Controlled Convergence The Method (cont.)

3. List important customer criteria down the left side of the matrix:

- Key, important, difficult, new Design Requirements
- Key customer requirements

Controlled Convergence The Method (cont.)

4. Choose one concept (often the original design) as the datum, compare criteria against this datum:

- + = better than, costs less than, less prone to, easier than etc.
- = worse than, more expensive than, more difficult than, more complex than, etc.
- S = More or less the same as the datum, some doubt etc.

Controlled Convergence The Method (cont.)

5. Total the scores: examine concepts of exceptional strength, study each weakness, if weaknesses are acceptable this is a good candidate.

If no apparent strong concept, change datum and run again; original design may be best!

CONCEPT	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ease of achieving 105-125 DbA		s	_		+	-	+	+	_	-	-		s	+
Ease of achieving 2000-5000 Hz	1190	s	s	N	+	s	s	+	s	-	1		s	+
Resistance to corrosion, erosion and water		-		0	s	_	12	s	-	+	F.	1	E	S
Resistance to vibration, shock, acceleration	D	s	1	Т	s	-	s	_	-	s	1	1		
Resistance to temperature	A	S	-		S	-	-	-	S	Ś	-	-	S	S
Response time	Т	S	1		.+	-	-	-	-	S	1	+	-	-
Complexity: number of stages	U	_	+	E	S	+	+	-	-	-	. +	+	-	-
Power consumption	М	-	-	v	+	1	1	+	-	+	-	-	S	+
Ease of maintenance		S	+	Α	+	+	+	-	-	S	+	+	S	-
Weight	1	-	-	L	+	-	-	-	S	Ŧ	4	-	-	+
Size		-	-	U	S		-	-	-	-	-	-	-	-
Number of parts		S	S	A	+	S	S	-	-	+	-	-	S	-
Life in service		S	-	Т	+	-	S	_	4		-	-	-	
Manufacturing cost		-	s	E		+	+	16		S	-	-	-	-
Ease of installation	1.1-	S	S	D	S	S	+	-272	S	$\frac{1}{2}$		-	S	-
Shelf life		S	s		S	S	-		S	s	S	S	S	S
FIGURE 4.4		0+ 6-	2+ 9-		8+ 1-	3+ 9-	5+ 7-	3+ 12-	0+ 11-	2+ 8-	2+ 13-	2+ 13-	0+ 8-	4+ 9-